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Abstract

This paper presents a novel approach to solve the largest empty sphere (LES) problem in the multidimensional

space by using a popular stochastic search approach, evolutionary algorithm (EA). When a set of points are given

in a space, the LES problem is to find a point from which the distance to the nearest point among the set is

maximized. Conventionally, the LES problem can be solved by the use of the Voronoi diagram which is a useful

data structure in the field of computational geometry. However, we have difficulty in constructing the Voronoi

diagram in the high-dimensional space because the time and the storage complexities grow exponentially as

the dimension of the problem becomes high. In this paper, an EA approach is used as an effective method of

finding the solution of the LES problem in the multidimensional Euclidean space. Experimental results show that

the proposed method successfully finds the solutions of the LES problems in various dimensional spaces and

is efficient in terms of the execution time and the necessary memory in comparison with the Voronoi diagram

approach.
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multidimensional largest empty sphere
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I. INTRODUCTION

The largest empty sphere (LES) problem is a frequently addressed proximity problem in the field of the

computational geometry [1]. Given a set of points (sites) in a space, the objective of the problem is to find a

point from which the distance to the nearest site is the longest. The practical importance of this problem arises

in several areas including industrial engineering, geometrical information systems and operational research [2].

For example, suppose that you are given N points in the plane, representing cities. You should put a toxic

waste dump as far from any of the cities as possible in order to minimize the influence of the toxic waste to

the people living in the cities. In this case, the best place of the dump will be the point from which the distance

to the nearest city is maximized.

The LES problem is stated formally as follows:

Largest Empty Sphere Problem: Given a set Sp of N points si, i = 1, ..., N , in a bounded space S,

find the point p in S from which the distance to the nearest point among the set is the longest, i.e.,

max
p∈S

min
i

d(p, si), (1)

where d(p, q) is the distance between two points p and q.

When we specify the space S as the two-dimensional Euclidean space, the problem becomes the largest

empty circle problem [3] and the “toxic waste dump problem” mentioned above falls into this category. Also,

the space S can be the surface of a (three-dimensional) sphere, which is the case that the cities are distributed

over the entire earth.

The LES problem can be solved using the Voronoi diagram [4], which is a simple and powerful spatial data

structure in computational geometry. Given a set Sp of N points in a space, the Voronoi diagram partitions

the space into N convex polyhedral regions so that the Voronoi cell of each given point si contains the set of

points which are closer to si than any other points in Sp. Once the Voronoi diagram is constructed, the center

of the largest empty sphere can be obtained by finding the Voronoi vertex which maximizes the distance to the

nearest point in Sp.

There are several algorithms for constructing Voronoi diagrams in the plane [3], [5]. With the help of these

work, we can solve the LES problem in the plane effectively. However, utilizing the Voronoi diagram becomes

difficult when the problem is high-dimensional. The time and the storage complexities constructing the Voronoi

diagram in the plane are given by O(N log N) and O(N), respectively, where N is the number of points, but

they grow exponentially as the dimension of the space becomes higher. Moreover, while the Voronoi diagram in
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the multidimensional hypercube has been studied extensively, there is little work for constructing the diagram

in other geometric spaces such as the surface of a multidimensional hypersphere.

In this paper, we introduce a novel approach using the evolutionary algorithm (EA) [6], [7] to solve the LES

problem in the multidimensional space. The EA is one of the most popular stochastic search algorithms and has

been successfully applied in various kinds of problems such as combinatorial/real-valued optimization problems

with differentiable/non-differentiable objectives. Especially, it has been a good method for the problems which

are difficult to solve mathematically or analytically, and thus, is well-suited for the multidimensional LES

problem. We design the two-stage searching process [8], [9] by using the search space renormalization scheme

in which the search domain is reduced around the best solution so far after the global search is converged

in some degree. This procedure enhances the fine-tuning capability of the EA and helps to obtain as accurate

solutions as the Voronoi diagram method yields. We demonstrate the performance of the proposed approach in

comparisons with that of the Voronoi diagram approach in multidimensional spaces.

In the following section, we discuss the method of solving the LES problem by using the Voronoi diagram.

Section III describes how to solve the problem by using the EA. The simulation results are given in Section

V, and finally, conclusion is made in Section VI.

II. VORONOI DIAGRAM APPROACH

Let Sp the set of the given N points si (i = 1, 2, ..., N ), as in the previous section. A Voronoi diagram is

the partitioning of a space with the N points into N convex polyhedrons such that each polyhedron contains

exactly one point and every point in a given polyhedron is closer to its central point than to any other. The

cells are called Voronoi polyhedrons (Voronoi polygons in the case of the plane), the vertices of the diagram are

Voronoi vertices, its line segments are Voronoi edges and the extreme rays (i.e., unbounded edges) are Voronoi

rays as shown in Fig. 1. Each of the given N points belongs to a unique Voronoi polyhedron and, if a point p

is contained in the Voronoi polyhedron associated with si, then si is the nearest neighbor of p.

The Voronoi diagram is used to solve the LES problem as follows [2]. Consider the function f(p), the

distance of point p to the nearest point among Sp. Within the Voronoi polyhedron which contains p and is

associated with si, f(p) is a unimodal function which has the minimum of zero at si, and the same applies for

each polyhedron of the described partition. Thus, f(p) attains its maximum at a vertex of one such polyhedron.

Therefore, the candidates of the center of the largest empty sphere are the vertices of the Voronoi diagram

and, among them, we choose the one having the largest radius. Fig. 1 shows an example of solving the largest

empty circle problem using the Voronoi diagram.

Several algorithms for constructing the Voronoi diagrams in R
2 have been developed in the field of compu-

tational geometry [3], [5]. It was proven that the Voronoi diagram in the plane can be computed in O(N log N)

time and with O(N) storage (actually the number of the vertices in the diagram is at most 2N − 5, which

comes from Euler’s formula) [2], [3].

Difficulty for solving the LES problem by the Voronoi diagram in the high-dimensional space lies in the

exponential growth of the complexity. In the D-dimensional Euclidean space, the Voronoi diagram of a set of

N points is computed in O(N log N + NpD/2q) optimal time [10] and its maximum combinatorial complexity
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Fig. 1. A Voronoi diagram (dashed line) and the largest empty circle (its center is marked with +).

(the maximum number of vertices, edges, and so on, of the diagram) is Θ(N pD/2q) [11]. In order to overcome

this difficulty, we propose an EA approach for solving the LES problem in the high-dimensional space in the

next section.

III. EA APPROACH

In our EA approach, we use the real-value encoding scheme and thus the coordinates of the solution is

directly used as the parameter values of the chromosome. The fitness function of the solution x directly comes

from Eq. (1):

C(x) = min
i

dE(x, si), (2)

where si is the i-th given point and dE(p, q) the Euclidean distance of two points p and q. Therefore, the

objective of the problem is to maximize C(x) with respect to x.

Fig. 2 shows an example of the fitness landscape of the parameter space obtained by Eq. (2) when the

dimension is two and 100 points are chosen in [0, 1]2 randomly. As shown in the figure, there are many local

optima (maxima) having similar costs at the sharp peaks. Actually, the number of local optima is equal to the

number of the Voronoi vertices.

In order to improve the fine-tuning capability of the EA, we adopt a two-stage searching process [8], [9] by

using the search space renormalization scheme. This concept is illustrated in Fig. 3. In the first stage, the search

domain is the entire parameter space as usual. After the criteria for terminating the first stage are satisfied, the

search focuses on the reduced search space around the best solution found in the first stage. In this case, the

parameter values of the chromosomes and the coordinates of the given points are renormalized (magnified) so

that we get more precise solutions.

The overall EA procedure including the two-stage searching process is summarized as follows.

Procedure EA for the LES problem

STAGE 1
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Fig. 2. Example of the landscape when 100 points are given in the plane. The global optimum is marked with +.
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Fig. 3. Search space renormalization scheme.

Step 1. Initialize and evaluate µ chromosomes.

Step 2. Generate µ offsprings from µ parents by mutation. Evaluate them.

Step 3. Select µ chromosomes among 2µ candidates (µ parents + µ offsprings)

for the next generation.

Step 4. If the termination conditions are satisfied, go to Step 5. Else, go

to Step 2.

STAGE 2

Step 5. Reduce the search space around the best chromosome. Magnify the space.

Move all the chromosomes into the reduced domain.

Step 6. Generate µ offsprings from µ parents by mutation. Evaluate them.

Step 7. Select µ chromosomes among 2µ candidates for the next generation.

Step 8. If the termination conditions are satisfied, stop. Else, go to Step

6.
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We start the algorithm with µ chromosomes which are initialized by random number generation. Each

chromosome becomes a parent chromosome and produces an offspring by mutation. Then, the parents and the

generated offsprings consist of a genetic pool from which the population of the next generation is selected.

This procedure continues and, if some conditions are satisfied, the first stage is terminated and the second

stage starts. At the beginning of the second stage, the search space is reduced around the position of the best

chromosome and the coordinates of the given points are multiplied by some constant to magnify the space.

The chromosomes which are out of the new space are spread randomly within the new space. We repeat the

procedure of generation of the offsprings and selection of the chromosomes as in the first stage. When some

termination conditions are satisfied, the overall EA procedure is terminated.

We use the Gaussian mutation operator which perturbs each gene of a chromosome by the Gaussian distri-

bution, i.e.,

x′

j = xj + N(0, σk), (3)

where xj is the j-th parameter of a chromosome, σk the standard deviation of the Gaussian distribution at the

k-th generation, and N(0, σk) Gaussian distribution with a mean of zero and a standard deviation of σk. σk

represents the degree of mutation at the k-th generation and gradually decreases as time goes:

σk =
σ0

k
. (4)

σ0 should be large enough to render the chromosome have a chance to explore the entire domain sufficiently

at the beginning of the algorithm.

After each parent produces an offspring by mutation, the parents and the offsprings compose the pool for

the population of the next generation. We use the binary tournament scheme for selection; two chromosomes

in the pool are chosen randomly and the one having the better cost is inserted in the population of the next

generation; this is repeated µ times. We apply the best-keeping scheme in which the best chromosome in the

pool is always kept in the next generation.

Each stage is terminated when the cost does not improve significantly during some generations. We judge

that the improvement of the cost is saturated if the cost of the best chromosome is not improved by R% during

k consecutive generations. R and k can be set to different values for each stage in order that we have the

flexibility for the tuning of the algorithm.

IV. EXPERIMENTS

We test the proposed approach via computer simulations. We compare the EA approach with the Voronoi

diagram approach. We make 30 problems with N data points ranging from 1000 to 5000 and D (dimension)

ranging from two to seven. Each data point is randomly generated in [0, 1]D. Both algorithms are implemented

in C language. Especially for generating the Voronoi diagram, we use the Quickhull package [12]. We run the

EA program five times with different initial random values. The results on a PC with a Pentium-4 3.2 GHz

CPU and 2 GB RAM are reported in Table I and Fig. 4. The Voronoi diagram approach failed to solve the

problems with more than 1000 points in D = 7 because the number of the Voronoi vertices are too much to be
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stored. Hence, the results for these cases are omitted in the table and in the figure. For the 26 problems which

the Voronoi diagram approach is successfully applied, the EA succeeded in finding the solutions for all trials.

We use the population of size 50 (i.e., µ = 50) in our EA approach. The initial standard deviation for the

Gaussian mutation scheme, σ0, is set to 100, which is sufficiently large for exploring the entire domain. The

first stage of the EA is terminated when the best cost is not improved by 1% during 3000 generations. This

criterion was determined on the basis of our observation that the chromosomes sufficiently explore the parameter

space until this criterion is met. The second stage is terminated when the improvement is less than 0.1% during

1000 generations since we can obtain sufficiently accurate solutions with this criterion in our experiments. The

number of the maximum generation is set to be large enough that the algorithm converges sufficiently and is

terminated by the stopping criteria.

Table I shows the errors of the costs and the positions of the solutions found by the EA in comparison with

those of the exact solutions by the Voronoi diagram approach. Ec is the relative error of the cost by the EA to

that of the Voronoi diagram method, i.e.,

Ec =
CV − CE

CV
× 100%, (5)

where CV and CE are the costs of the solutions found by the Voronoi diagram method and the EA, respectively.

Ep is the absolute maximum error in the position of the solution, i.e.,

Ep = max
j

|xV
j − xE

j |, (6)

where xV
j and xE

j are the j-th coordinates of the solutions found by the Voronoi diagram method and the EA,

respectively.

The results in the table show that the EA successfully finds the solutions for all the 26 problems. The relative

errors in costs are less than about 0.2% on average (0.3% in worst cases) and the errors in the parameter values

are maximally the orders of 10−3 on average. We see that Ep becomes larger as the dimension becomes higher,

which is due to the high complexity of the high-dimensional problems.

Fig. 4 compares the CPU time for executing the Voronoi diagram method and the EA method. For the EA,

the average values over five trials are shown. When the dimension is low, the Voronoi diagram method is much

quicker than the EA. However, the inversion begins to occur when the dimension is 5 and, when D = 6, the

EA is much faster than the Voronoi diagram approach. The required CPU time for both methods increases as

the number of points increases and the dimension becomes larger, but the rate of the growth in the EA is much

less than that in the Voronoi diagram method. For example, when the dimension becomes higher from two to

six with N = 5000, the time for the Voronoi diagram method increases by the factor of about 1690 (from 0.6

to 1014 seconds) while the CPU time for the EA increases by the factor of just 1.6 (from 38 to 61 seconds).

Memory requirement is another important difference between the Voronoi diagram method and the EA. The

number of vertices of the Voronoi diagram exponentially increases, and so does the memory occupation for

saving the vertices. However, we need to save only 2 × D × µ for the parents and the offsprings in the EA.

When D = 6 and N = 5000, for example, it was necessary to save about 4.5 × 106 vertices in the Voronoi

diagram while the EA has only 600 parameters. For the problems with more than 1000 points in the dimensions
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Fig. 4. Comparison of the CPU time of the Voronoi diagram approach and the proposed EA approach when (a) D=2, (b) D=3, (c) D=4,

(d) D=5, (e) D=6 and (f) D=7.
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TABLE I

PERFORMANCE OF THE PROPOSED APPROACH IN THE VIEWPOINT OF THE SOLUTION QUALITY. AVERAGE, MAXIMUM AND MINIMUM

VALUES FOR FIVE TRIALS ARE SHOWN FOR EACH PERFORMANCE MEASURE.

Ec(%) EpDim #Points
Avg Max Min Avg Max Min

2 1000 0.022 0.052 0.000 7.99e-5 1.89e-4 7.07e-6

2 2000 0.045 0.064 0.028 4.87e-5 9.52e-5 2.95e-5

2 3000 0.069 0.151 0.036 7.49e-5 2.19e-4 1.72e-5

2 4000 0.068 0.112 0.034 4.52e-5 8.51e-5 7.63e-6

2 5000 0.104 0.233 0.019 6.29e-5 1.85e-4 7.26e-6

3 1000 0.091 0.144 0.037 7.24e-4 1.98e-3 1.58e-4

3 2000 0.066 0.114 0.027 4.52e-4 1.09e-3 7.77e-5

3 3000 0.134 0.167 0.086 3.27e-4 4.83e-4 1.59e-4

3 4000 0.193 0.275 0.123 3.47e-4 4.84e-4 2.78e-4

3 5000 0.152 0.225 0.016 3.28e-4 6.89e-4 4.05e-5

4 1000 0.093 0.141 0.045 5.92e-4 1.14e-3 3.46e-4

4 2000 0.077 0.116 0.040 1.68e-3 3.87e-3 4.20e-4

4 3000 0.150 0.251 0.089 5.64e-4 1.42e-3 2.43e-4

4 4000 0.147 0.272 0.086 8.15e-4 1.55e-3 1.61e-4

4 5000 0.174 0.260 0.136 7.30e-4 8.53e-4 5.35e-4

5 1000 0.111 0.145 0.053 1.71e-3 3.39e-3 3.79e-4

5 2000 0.101 0.134 0.077 2.04e-3 2.72e-3 1.20e-3

5 3000 0.149 0.204 0.098 2.69e-3 3.33e-3 1.22e-3

5 4000 0.092 0.136 0.042 8.84e-4 1.52e-3 3.58e-4

5 5000 0.128 0.170 0.102 1.14e-3 2.80e-3 4.86e-4

6 1000 0.105 0.149 0.079 4.06e-3 6.96e-3 1.27e-3

6 2000 0.104 0.127 0.087 5.19e-3 8.90e-3 2.20e-3

6 3000 0.118 0.155 0.096 4.50e-3 6.04e-3 2.67e-3

6 4000 0.133 0.207 0.097 2.22e-3 4.67e-3 7.85e-4

6 5000 0.146 0.176 0.123 2.23e-3 5.18e-3 1.03e-3

7 1000 0.157 0.188 0.109 9.93e-3 1.33e-2 6.72e-3

larger than six, it was impossible to perform the experiments with the Voronoi diagram due to the lack of the

memory space for the Voronoi vertices, as mentioned.

The effect of the search space renormalization scheme is shown in Table II. For D = 5 and N = 5000,

the EA without the scheme was run five times with the same conditions for the two-stage EA (i.e., the same

random seeds and the same generations) and was compared to the case with the scheme. We see that the quality

of the solution with the two-stage search is better than that of the single stage search; the errors in the costs

and the positions of the solutions are reduced by the search space renormalization scheme.

V. CONCLUSION

We have proposed the stochastic search approach using the EA for solving the LES problem on the mul-

tidimensional space. The experiments demonstrated the performance of the proposed method in comparison
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TABLE II

EFFECT OF THE SEARCH SPACE RENORMALIZATION SCHEME. PERFORMANCE WITH AND WITHOUT THE SCHEME IS COMPARED FOR

D=5 AND N=5000.

Ec (%) Ep

Avg Max Min Avg Max Min

Without 0.674 0.921 0.411 1.45e-2 2.20e-2 5.91e-3

With 0.128 0.170 0.102 1.14e-3 2.80e-3 4.86e-4

with the Voronoi diagram approach. The EA approach successfully found the solutions with sufficiently high

accuracy. Especially, for the problems in the high-dimensional space, the EA reduces much time in comparison

with the Voronoi diagram method. Besides, the EA requires much smaller memory than the Voronoi diagram

approach in which the necessary memory space exponentially grows with the dimension.

In addition to the efficiency in terms of the execution time and the memory in high-dimensional spaces, the

following advantages are acquired by the use of the proposed stochastic search approach. First, the EA can be

easily applied for the problems defined on other spaces such as the surface of the hypersphere. Although some

methods constructing the Voronoi diagram on a three-dimensional sphere have been proposed [13], [14], their

generalization to the multidimensional hypersphere is not straightforward and no algorithm for this appears to

be known. Second, we can easily apply the proposed EA approach to the problem with other distance metrics

in the same way given in this paper. Although we have not treated such cases, it is clear that this is possible by

just modifying the fitness function in Eq. (2) appropriately. Third, the Voronoi approach inherently limits the

location of the center of the empty sphere within the convex hull of the given points, which makes it difficult

to solve the problem when the solution is allowed to be outside the convex hull. In the EA, this situation can

be treated during the mutation steps by confining the offsprings within the desired domain.

We are currently working on applying the proposed approach to the structural optimization problem of

artificial neural networks.
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